(Belli dell'Amico \& Calderazzo, 1973). The shortest $\mathrm{Au}-\mathrm{Au}$ distance in the present compound is $5.68 \AA$; so there is no evidence of $\mathrm{Au}-\mathrm{Au}$ interactions as in (i $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2}$) $\mathrm{AuC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}(3.27$ and $3.72 \AA$) and (piperidine) AuCl [3.30 \AA; Guy, Jones, Mays \& Sheldrick (1977)].

We are grateful to the Science Research Council for providing the diffractometer, and for financial support to PDG and JJG. The calculations were performed with the Cambridge University IBM $370 / 165$ computer and programs written by GMS, and Fig. 1 was drawn with PLUTO written by Dr W. D. S. Motherwell.

References

Baenziger, N. C., Bennett, W. E. \& Soboroff, D. M. (1976). Acta Cryst. B32, 962-963.

Baker, R. W. \& Pauling, P. J. (1972). J. Chem. Soc. Dalton, pp. 2264-2266.
Belli dell'Amico, D. \& Calderazzo, F. (1973). Gazz. Chim. Ital. 103, 1099-1 104.
Bellon, P. L., Manassero, M. \& Sansoni, M. (1969). Ric. Sci. 39, 173-175.
Corfield, P. W. R. \& Shearer, H. M. M. (1967). Acta Cryst. 23, 156-162.
Guy, J. J., Jones, P. G., Mays, M. J. \& Sheldrick, G. M. (1977). J. Chem. Soc. Dalton. In the press.

Tamaki, A. \& Kochi, J. K. (1973). J. Organomet. Chem. 61, 441-450.

Acta Cryst. (1977). B33, 139-141

Trifluoromethylselenium Trichloride

By Colin J. Marsden, George M. Sheldrick and Robin Taylor
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 23 June 1976; accepted 3 July 1976)

Abstract

CF}_{3} \mathrm{SeCl}_{3}\), orthorhombic, Pbca, $a=18.938$ (23), $b=7.399$ (20), $c=18.880$ (22) $\AA, U=2646 \AA^{3}$, $Z=16, D_{x}=2.55 \mathrm{~g} \mathrm{~cm}^{-3}, \mu($ Мо $K \alpha)=66.08 \mathrm{~cm}^{-1}$. The structure was solved by direct methods and refined to an R of 0.093 for 474 unique diffractometer data. It consists of discrete dimers $\left(\mathrm{CF}_{3} \mathrm{SeCl}_{3}\right)_{2}$, in which each Se is coordinated by a CF_{3} group, two bridging Cl and two terminal Cl in an approximately square-pyramidal arrangement with axial CF_{3}. The two SeCl_{4} planes make an angle of 154° with one another, and the dimer possesses approximate mm symmetry.

Introduction. Vapour-phase studies on the Group VI tetrahalides are consistent with structures based on a trigonal bipyramid with an equatorial position occupied by a lone pair, in accordance with the VSEPR hypothesis. Similar geometries are found in crystalline $\mathrm{Ph}_{2} \mathrm{SeX}_{2}$ (McCullough \& Hamburger, 1941, 1942) and (p-tolyl) $)_{2} \mathrm{SeX}_{2}$ (McCullough \& Marsh, 1950) $(\mathrm{X}=\mathrm{Cl}$, $\mathrm{Br})$. On the other hand, the crystal structure of TeCl_{4} (Buss \& Krebs, 1971) contains isolated tetramers in which each Te is surrounded by a distorted octahedron of three terminal and three bridging Cl atoms. The vibrational spectrum of $\mathrm{CF}_{3} \mathrm{SeCl}_{3}$ also indicates extensive Cl -bridging in the solid, but an X-ray crystallographic study was necessary to determine the structure.

A sample of $\mathrm{CF}_{3} \mathrm{SeCl}_{3}$ was prepared by the action of excess Cl_{2} on $\left(\mathrm{CF}_{3} \mathrm{Se}\right)_{2}$ and left in a sealed tube for
about a year, during which time a few well formed crystals grew by sublimation. These were transferred to Lindemann glass capillary tubes in a dry bag because the compound is extremely sensitive to moisture. Intensities were determined with an automated Stoe twocircle diffractometer, Mo $K \alpha$ radiation, graphite monochromator and a crystal $0.17 \times 0.57 \times 0.23 \mathrm{~mm}$ (layers $h 0-8 l$). 933 reflexions were measured in an approximately constant count mode; after rejection of reflexions with a net count less than $2 \cdot 5 \sigma$ based on counting statistics, equivalent data were merged to give 474 unique reflexions. Lorentz, polarization and absorption corrections were applied. a and c were obtained by a least-squares fit to the diffractometer ω angle measurements of 120 h 0 l reflexions; b was obtained from diffractometer μ measurements.

The structure was solved by multisolution sigma-2 sign expansion followed by successive difference syntheses. It was apparent that the F atoms of both crystallographically independent CF_{3} groups were smeared out by the effects of thermal motion, and in the final full-matrix least-squares cycles it was necessary to constrain $\mathrm{C}-\mathrm{F}$ to $1.33 \AA$ and $\mathrm{F}-\mathrm{C}-\mathrm{F}$ to 108.5°. Anisotropic temperature factors were employed for the Se and F atoms; interlayer scale factors were fixed at the values to which they had refined during earlier cycles in which only isotropic temperature factors had been used, so the final values of U_{22} have
little physical significance. Complex neutral-atom scattering factors were employed; the weighting scheme was $w=\left[\sigma^{2}(F)+0.0003 F_{o}^{2}\right]^{-1}$. The refinement converged to $R^{\prime}=\Sigma w^{1 / 2} \Delta / \Sigma w^{1 / 2}\left|F_{0}\right|=0.081$ and $R=$ 0.093 . Positional and thermal parameters are given in Tables 1 and 2, and bond lengths and angles in Tables 3 and 4.*

Discussion. The structure (Fig. 1) consists of discrete dimers $\left(\mathrm{CF}_{3} \mathrm{SeCl}_{3}\right)_{2}$; each Se is coordinated by a CF_{3} group, two bridging Cl and two terminal Cl atoms in an approximately square-pyramidal arrangement. The CF_{3} groups occupy the axial positions of the square pyramids, and are cis to one another; the repulsive interactions between them are probably responsible for the deviation of the $\mathrm{Cl}_{2} \mathrm{SeCl}_{2} \mathrm{SeCl}_{2}$ skeleton from planarity [the angle between the least-squares mean planes defined by $\mathrm{Cl}(1) \mathrm{Cl}(2) \mathrm{Cl}(4) \mathrm{Cl}(5) \mathrm{Se}(1)$ and $\mathrm{Cl}(1) \mathrm{Cl}(3) \mathrm{Cl}(4) \mathrm{Cl}(6) \mathrm{Se}(2)$ is $\left.154^{\circ}\right]$. The lone-pair electrons presumably occupy the vacant positions in the ' ψ

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31980 (4 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 1. Atom coordinates $\left(\times 10^{4}\right)$ and isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

	x	y	z	U
$\mathrm{Se}(1)$	$3416(3)$	$697(7)$	$2412(2)$	
$\mathrm{Se}(2)$	$3423(3)$	$-1031(7)$	$4337(3)$	
$\mathrm{Cl}(1)$	$4281(7)$	$697(21)$	$3583(7)$	$60(5)$
$\mathrm{Cl}(2)$	$3977(8)$	$3002(21)$	$1966(8)$	$60(5)$
$\mathrm{Cl}(3)$	$2605(8)$	$-2586(25)$	$4950(8)$	$76(5)$
$\mathrm{Cl}(4)$	$2806(7)$	$-1962(22)$	$3131(8)$	$71(6)$
$\mathrm{C}(5)$	$2670(7)$	$348(23)$	$1577(8)$	$65(6)$
$\mathrm{Cl}(6)$	$3959(8)$	$-123(22)$	$5303(8)$	$76(5)$
$\mathrm{C}(1)$	$4107(12)$	$-969(35)$	$1937(13)$	$95(25)$
$\mathrm{F}(1)$	$4753(12)$	$-598(35)$	$2172(13)$	
$\mathrm{F}(2)$	$4103(12)$	$-786(35)$	$1236(13)$	
$\mathrm{F}(3)$	$3957(12)$	$-2678(35)$	$2093(13)$	
$\mathrm{C}(2)$	$4036(17)$	$-3305(39)$	$4265(18)$	$75(22)$
$\mathrm{F}(4)$	$3780(7)$	$-4411(39)$	$3773(18)$	
$\mathrm{F}(5)$	$4061(17)$	$-4192(39)$	$488(18)$	
$\mathrm{F}(6)$	$4690(17)$	$-2481(39)$	$4083(18)$	

octahedron' around each Se atom, but there are also short intermolecular SE $\cdots \mathrm{Cl}$ contacts in approximately these directions $\left[\mathrm{Se}(1) \cdots \mathrm{Cl}\left(4^{\prime}\right) \quad 3 \cdot 19\right.$, $\left.\mathrm{Se}(2) \cdots \mathrm{Cl}\left(3^{\prime}\right) 3.41 \AA\right]$. It is debatable whether they represent significant covalent interactions, possibly in-

Table 3. Bond lengths (\AA)
Symmetry transformation relating designated atoms to reference atoms at $\left(x_{2}, v, z\right):$ (i) $\frac{1}{2}-x,-\frac{1}{2}+y, z$.

$\mathrm{Cl}(1)-\mathrm{Se}(1)$	$2.75(2)$	$\mathrm{Cl}(1)-\mathrm{Se}(2)$	$2.51(2)$
$\mathrm{Cl}(2)-\mathrm{Se}(1)$	$2.18(2)$	$\mathrm{Cl}(3)-\mathrm{Se}(2)$	$2.25(2)$
$\mathrm{Cl}(4)-\mathrm{Se}(1)$	$2.65(2)$	$\mathrm{Cl}(4)-\mathrm{Se}(2)$	$2.65(2)$
$\mathrm{Cl}(5)-\mathrm{Se}(1)$	$2.13(2)$	$\mathrm{Cl}(6)-\mathrm{Se}(2)$	$2.19(2)$
$\mathrm{C}(1)-\mathrm{Se}(1)$	$2.01(2)$	$\mathrm{C}(2)-\mathrm{Se}(2)$	$2.05(2)$
$\mathrm{Cl}(4)-\mathrm{Se}\left(\mathrm{l}^{\mathrm{i}}\right)$	3.19	$\mathrm{Cl}(3)-\mathrm{Se}\left(2^{\mathrm{i}}\right)$	3.41

Table 4. Bond angles $\left({ }^{\circ}\right)$

$\mathrm{Cl}(2)-\mathrm{Se}(1)-\mathrm{Cl}(1)$	91.2(6)	$\mathrm{Cl}(3)-\mathrm{Se}(2)-\mathrm{Cl}(1)$	$176 \cdot 1$ (5)
$\mathrm{Cl}(4)-\mathrm{Se}(1)-\mathrm{Cl}(1)$	81.3 (6)	$\mathrm{Cl}(4)-\mathrm{Se}(2)-\mathrm{Cl}(1)$	86.0 (6)
$\mathrm{Cl}(4)-\mathrm{Se}(1)-\mathrm{Cl}(2)$	171.9 (6)	$\mathrm{Cl}(4)-\mathrm{Se}(2)-\mathrm{Cl}(3)$	$90 \cdot 3$ (6)
$\mathrm{Cl}(5)-\mathrm{Se}(1)-\mathrm{Cl}(1)$	171.2 (6)	$\mathrm{Cl}(6)-\mathrm{Se}(2)-\mathrm{Cl}(1)$	90.9 (6)
$\mathrm{Cl}(5)-\mathrm{Se}(1)-\mathrm{Cl}(2)$	97.6 (7)	$\mathrm{Cl}(6)-\mathrm{Se}(2)-\mathrm{Cl}(3)$	92.8 (7)
$\mathrm{Cl}(5)-\mathrm{Se}(1)-\mathrm{Cl}(4)$	90.0 (6)	$\mathrm{Cl}(6)-\mathrm{Se}(2)-\mathrm{Cl}(4)$	176.6 (6)
$\mathrm{C}(1)-\mathrm{Se}(1)-\mathrm{Cl}(1)$	88.4 (10)	$\mathrm{C}(2)-\mathrm{Se}(2)-\mathrm{Cl}(1)$	90.8 (11)
$\mathrm{C}(1)-\mathrm{Se}(1)-\mathrm{Cl}(2)$	89.4 (10)	$\mathrm{C}(2)-\mathrm{Se}(2)-\mathrm{Cl}(3)$	90.2 (12)
$\mathrm{C}(1)-\mathrm{Se}(1)-\mathrm{Cl}(4)$	93.3 (10)	$\mathrm{C}(2)-\mathrm{Se}(2)-\mathrm{Cl}(4)$	88.8 (12)
$\mathrm{C}(1)-\mathrm{Se}(1)-\mathrm{Cl}(5)$	91.5 (10)	$\mathrm{C}(2)-\mathrm{Se}(2)-\mathrm{Cl}(6)$	92.5 (12)
$\mathrm{Se}(2)-\mathrm{Cl}(1)-\mathrm{Se}(1)$	94.0 (6)	$\mathrm{Se}(2)-\mathrm{Cl}(4)-\mathrm{Se}(1)$	93.1 (6)
$\mathrm{F}(1)-\mathrm{C}(1)-\mathrm{Se}(1)$	108.8	$\mathrm{F}(4)-\mathrm{C}(2)-\mathrm{Se}(2)$	110.2
$\mathrm{F}(2)-\mathrm{C}(1)-\mathrm{Se}(1)$	112.2	$\mathrm{F}(5)-\mathrm{C}(2)-\mathrm{Se}(2)$	111.6
$\mathrm{F}(3)-\mathrm{C}(1)-\mathrm{Se}(1)$	110.2	$\mathrm{F}(6)-\mathrm{C}(2)-\mathrm{Se}(2)$	109.4

Fig. 1. The trifluoromethylselenium trichloride dimer.

Table 2. Anisotropic temperature factors ($\AA^{2} \times 10^{3}$) The temperature factor exponent takes the form: $-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+\cdots+2 U_{12} h k a^{*} b^{*}\right)$.

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{Se}(1)$	$43(3)$	$40(3)$	$33(4)$	$0(3)$	$1(3)$	$1(5)$
$\mathrm{Se}(2)$	$59(4)$	$43(3)$	$37(4)$	$-4(3)$	$-2(3)$	$-6(5)$
$\mathrm{F}(1)$	$83(26)$	$172(43)$	$120(32)$	$-47(32)$	$-34(22)$	$57(37)$
$\mathrm{F}(2)$	$192(48)$	$158(47)$	$198(49)$	$-74(44)$	$71(41)$	$96(44)$
$\mathrm{F}(3)$	$227(50)$	$55(27)$	$245(52)$	$42(30)$	$167(43)$	$64(37)$
$\mathrm{F}(4)$	$453(98)$	$121(47)$	$201(54)$	$-73(43)$	$-159(61)$	$148(60)$
$\mathrm{F}(5)$	$337(81)$	$197(71)$	$381(98)$	$108(70)$	$64(74)$	$221(64)$
$\mathrm{F}(6)$	$200(57)$	$153(52)$	$405(84)$	$53(58)$	$219(63)$	$77(49)$

volving donation of electron density into the $\mathrm{Se} 4 d$ orbitals, or whether they are electrostatic dipole-dipole interactions. Similar short $\mathrm{Se} \cdots \mathrm{Cl}$ contacts are found in ($\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}$) SeOCl ${ }_{3}$ (Cordes, 1967) and $\mathrm{py}_{2} \mathrm{SeOCl}_{2}$ (Lindqvist \& Nahringbauer, 1959). The $\mathrm{Se}-\mathrm{C}$ distances (mean $2.03 \AA$) are consistent with the values obtained by electron diffraction in $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Se}[1.978$ (9) \AA] and $\left(\mathrm{CF}_{3} \mathrm{Se}\right)_{2}[2.018$ (20) $\AA]$ by Marsden \& Sheldrick (1971a,b). The mean $\mathrm{Se}-\mathrm{Cl}($ terminal) distance of $2 \cdot 19$ (2) \AA is close to the sum of Pauling covalent radii, but significantly shorter than the axial $\mathrm{Se}-\mathrm{Cl}$ bonds in $(p \text {-tolyl) })_{2} \mathrm{SeCl}_{2}$ [mean 2.38(2) \AA] and the terminal $\mathrm{Se}-\mathrm{Cl}$ bonds in $\mathrm{py}_{2} \mathrm{SeOCl}_{2}$ and $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}\right) \mathrm{SeOCl}_{3}$ [mean 2.39 (2) and 2.25 (2) Å respectively]. Similarly, the $\mathrm{Se}-\mathrm{Cl}$ (bridging) bonds (mean $2.64 \AA$) are shorter than those in the other five-coordinate Se species, although it should be noted that the bridging Cl in $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}\right) \mathrm{SeOCl}_{3}$ is also involved in hydrogen bonding. One of the $\mathrm{Se}-\mathrm{Cl}-\mathrm{Se}$ bridges is symmetrical but the other is not; this is probably because of the influence of the $\mathrm{Se}(1) \cdots \mathrm{Cl}\left(4^{\prime}\right)$ interaction. Similarly, the $\mathrm{Se}(2) \cdots \mathrm{Cl}\left(3^{\prime}\right)$ interaction probably accounts for the slight lengthening of the $\mathrm{Se}(2)-\mathrm{Cl}(3)$ bond.

We are grateful to the Science Research Council for providing the diffractometer, and for financial support to CJM and RT. The calculations were performed on the Cambridge University IBM 370/165 computer with programs written by GMS, and Fig. 1 was drawn with PLUTO written by Dr W.D. S. Motherwell.

References

Buss, B. \& Krebs, B. (1971). Inorg. Chem. 10, 2795-2800.
Cordes, A. W. (1967). Inorg. Chem. 6, 1204-1208.
Lindquist, I. \& Nahringbauer, G. (1959). Acta Cryst. 12, 638-642.
McCullough, J. D. \& Hamburger, G. (1941). J. Amer. Chem. Soc. 63, 803-807.
McCullough, J. D. \& Hamburger, G. (1942). J. Amer. Chem. Soc. 64, 508-513.
McCullough, J. D. \& Marsh, R. E. (1950). Acta Cryst. 3, 41-45.
Marsden, C. J. \& Sheldrick, G. M. (1971a). J. Mol. Struct. 10, 405-412.
Marsden, C. J. \& Sheldrick, G. M. (1971b). J. Mol. Struct. 10, 419-425.

Acta Cryst. (1977). B33, 141-143

(\pm)-(Z,Z)-(1-3- $:$:5-7- η-Heptadienediyl)rhodium(I) Hexafluoroacetylacetonate

By N. W. Alcock and J. A. Conneely
Department of Molecular Sciences, University of Warwick, Coventry CV4 7AL, England

(Received 21 June 1976; accepted 10 July 1976)

Abstract. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{6} \mathrm{O}_{2} \mathrm{Rh}$, orthorhombic, C 222 ; $a=8.599$ (1),$b=14.684$ (3),$c=11.264$ (2) \AA, $V=1422.3 \AA^{3}$ at $18^{\circ} \mathrm{C}, Z=4, D_{x}=1.89 \mathrm{~g} \mathrm{~cm}^{-3}$; $\mu(\mathrm{Cu} K \alpha)=148.4 \mathrm{~cm}^{-1}$. The ring of the parent transdivinylcyclopropane has completely opened (C-C, $2.25 \AA$), and it coordinates to Rh as two allyl groups (Rh-C, between 2.09 and $2.26 \AA$). The complex has twofold symmetry, and Rh is also coordinated by two O atoms of the hexafluoroacetylacetonate ($\mathrm{Rh}-\mathrm{O}$, $2 \cdot 15 \AA$).

Introduction. The title compound was prepared by the reaction of trans-divinylcyclopropane with bis(ethylene)rhodium(I) hexafluoroacetylacetonate and recrystallized from pentane (Brown, Golding \& Stofko, 1976). A crystal was mounted in a capillary because it tended to sublime, and data were collected rapidly (over 10 h) on a Syntex $P 2_{1}$ diffractometer with graphitemonochromatized $\mathrm{Cu} K \alpha$ radiation to a $2 \theta_{\text {max }}$ of 130° at scan rates between 1.5 and $29.3^{\circ} \mathrm{min}^{-1}$, depending
on the intensity of a 2 s prescan. There was significant loss of intensity of three standard reflexions and the data were renormalized. 521 reflexions were considered observed, $I / \sigma(I) \geq 3 \cdot 0$, and corrected for Lorentz, polarization and absorption effects.

Apparent systematic absences: $h k l, h+k=2 n+1$ and $h 0 l, l=2 n+1$, indicate space groups $C m c m$, $C m c 2_{1}$ or $C 2 \mathrm{~cm}$ ($=A m a 2$ rotated). With the Rh position, from a Patterson synthesis, in the special position $0, y, \frac{1}{4}, \mathrm{Cmcm}$ (which was provisionally assumed) requires $m m$ site symmetry. With this, light atoms were located and $R=0.13$ was reached, but the hydrocarbon appeared to be nine-membered, with four atoms off the mirror planes. This was implausible, and Cmc_{1} or $C 2 \mathrm{~cm}$ were no more satisfactory (requiring m symmetry). It seemed likely, therefore, that the apparent glide-plane absences had arisen by accident because all but two of the atoms nearly conformed to it; if it is relaxed, $\mathrm{C} 222_{1}, \mathrm{C} 222, \mathrm{Cmm} 2$ and Cmmm are possible, of which only the first has a special position consistent

